Appendix A - Decimal to Hexadecimal Conversion Chart

00 INVALID ADDRESS	32 set S2,S1 to 2,0	64 set S2,S1 to 4,0	96 set S2,SI to 6,0
01 set S2,S1 to 0,1	33 set S2,S1 to 2,1	65 set S2,S1 to 4,1	97 set S2,SI to 6,1
02 set S2,S1 to 0,2	34 set S2,S1 to 2,2	66 set S2,S1 to 4,2	98 set S2,Sl to 6,2
03 set S2,S1 to 0,3	35 set S2,S1 to 2,3	67 set S2,S1 to 4,3	99 set S2,SI to 6,3
04 set S2,S1 to 0,4	36 set S2, S1 to 2,4	68 set S2,S1 to 4,4	
05 set S2,S1 to 0,5	37 set S2,S1 to 2,5	69 set S2,S1 to 4,5	
06 set S2,S1 to 0,6	38 set S2,S1 to 2,6	70 set S2,S1 to 4,6	
07 set S2,S1 to 0,7	39 set S2,S1 to 2,7	71 set S2,S1 to 4,7	
08 set S2,S1 to 0,8	40 set S2,S1 to 2,8	72 set S2,S1 to 4,8	
09 set S2,S1 to 0,9	41 set S2,S1 to 2,9	73 set S2,S1 to 4,9	
10 set S2,S1 to 0,A	42 set S2,S1 to 2,A	74 set S2,S1 to 4,A	
11 set S2,S1 to 0,B	43 set S2,S1 to 2,B	75 set S2,S1 to 4,B	NOTES
12 set S2,S1 to 0,C	44 set S2,S1 to 2,C	76 set S2,S1 to 4,C	
13 set S2,S1 to 0,D	45 set S2,S1 to 2,D	77 set S2,S1 to 4,D	00 Decimal ($\mathrm{S} 2, \mathrm{SI}=0,0$)
14 set S2,S1 to 0,E	46 set S2 S1 to 2,E	78 set S2,S1 to 4,E	is not allowed on any devic
15 set S2,S1 to 0,F	47 set S2,S1 to 2,F	79 set S2,S1 to 4,F	Max PD408 Address:
16 set S2,S1 to 1,0	48 set S2,S1 to 3,0	80 set S2,S1 to 5,0	63 Decimal (S2,S1 = 3,F)
17 set S2,S1 to 1,1	49 set S2,S1 to 3,1	81 set S2,S1 to 5,1	
18 set S2,S1 to 1,2	50 set S2,S1 to 3,2	82 set S2,S1 to 5,2	Max. PSxx Station Address:
19 set S2,S1 to 1,3	51 set S2,S1 to 3,3	83 set S2,S1 to 5,3	99 Decimal (S2,S1 $=6,3$)
20 set S2,S1 to 1,4	52 set S2,S1 to 3,4	84 set S2,S1 to 5,4	
21 set S2,S1 to 1,5	53 set S2,S1 to 3,5	85 set S2,S1 to 5,5	Max. PTxx Patcher Address:
22 set S2,S1 to 1,6	54 set S2,S1 to 3,6	86 set S2,S1 to 5,6	07 Decimal (S2,S1 = 0,7)
23 set S2,S1 to 1,7	55 set S2,S1 to 3,7	87 set S2,S1 to 5,7	
24 set S2,S1 to 1,8	56 set S2,S1 to 3,8	88 set S2,S1 to 5,8	
25 set S2,S1 to 1,9	57 set S2,S1 to 3,9	89 set S2,S1 to 5,9	
26 set S2,S1 to 1,A	58 set S2,S1 to 3,A	90 set S2,S1 to 5,A	
27 set S2,S1 to 1,B	59 set S2,S1 to 3,B	91 set S2,S1 to 5, B	
28 set S2,S1 to 1, C	60 set S2,S1 to 3, C	92 set S2,S1 to 5, C	
29 set S2,S1 to 1,D	61 set S2,S1 to 3,D	93 set S2,S1 to 5, D	
30 set S2,S1 to 1,E	62 set S2,S1 to 3,E	94 set S2,S1 to 5,E	
31 set S2,S1 to 1,F	63 set S2,S1 to 3,F	95 set S2,S1 to 5,F	

Appendix D - Protocol Stations Button Numbers Chart

Double-Gang Arrangements

1	5	9	13
1	5	1	13
2	6	0	14
3	7	11	15
4	8	12	16

PS-16

PS-12

ㅇ․․ㅢ에의의 Appendix B - PD SERIES DIMMER LOAD SCHEDULE Explanation

(P)

This page is designed to show an example of how to fill in a switch assignment sheet. More information is provided in the PROTOCOL SOFTWARE MANUAL and the PROTOCOL HARDWARE MANUAL.
First, the general station information must be filled in, and then the information for each switch, including the switch function and the loads that it will affect.

PROTOCOL Hardware/Software Manual by Digital Lighting Systems, Inc.

Appendix E - Protocol Stations Wire Gauge Chart

Recommended maximum number of PS Series stations (or other nodes such as DCI-16's, DCO-4's, PT Series Patch Panels and RAU-96's) per home run when using a 9 VOLT AC transformer. Computations are based on an even distribution of nodes along the 9 VAC power line.

Maximum Number Of Stations (Nodes) Versus Cable Length and Gauge

Cable Length	50'	100'	150'	200'	250'	300'	400'	500'	600'	800'
22 Gauge	23	11	8	6	5	4	3	2	2	1
20 Gauge	36	18	12	9	7	6	5	4	3	2
18 Gauge	58	29	19	14	12	10	7	6	5	4
16 Gauge	92	46	31	23	18	15	11	9	8	6
14 Gauge	145	73	48	36	29	24	18	15	12	9
12 Gauge	231	116	77	58	46	39	29	23	19	14

NOTE:

MAXIMUM LENGTH OF DATA TWISTED PAIR MUST NOT EXCEED 1500' PER HOME RUN.
Two 18 Gauge or thicker twisted pairs are recommended for the PROTOCOL System, one pair data, one pair power. A shielded cable may be used to provide a ground for all stations. Carol Cable \#C3362 or Equivalent 4-Wire (2 Twisted Pairs) Shielded Network Bus Cable may be used

Appendix F: New Preset Lock and Unlock Procedure

New System Feature:

All new systems have a feature that makes sure that end-user cannot change the scenes by accident. The default setting of the station is to have the preset buttons locked. When preset buttons are locked scenes cannot be changed.

To "unlock" the presets in order to be able to set a lighting scene, the station will need to be reset. The station is reset by either unplugging it from its power supply or pressing the reset button located under the faceplate between buttons 1 and 5 .

As the station is reseting (all LED's on station will be flashing), buttons 4 and 8 must be pressed simultaneously (LED's will cease to flash). The presets are now unlocked. Scenes can now be set by the usual method (adjusting light levels and then pressing and holding a preset button for 4 seconds until all LED's flash)

Once all scenes have been stored, the station may now be locked. Locking the station is done by reseting the station by using the reset button or unplugging the station from its power supply. The station is now locked

Individual light levels may still be changed whether station is locked or unlocked. Only presets buttons are affected by this procedure.

